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Instability of a liquid jet of parabolic velocity profile
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Abstract

A linear instability analysis is performed to arrive at the dispersion relation that governs the instability of an inviscid liquid jet emanated
into an inviscid gas. The velocity profile within the jet is varied from parabolic to uniform in order to model the effects of its relaxation
on jet instability and intact length. The results indicate that the closer the profile to uniform the more pronounced the instability. In the
jet atomization regime, increasing Weber number and/or gas to liquid density ratio promote instability. ©2000 Elsevier Science S.A. All
rights reserved.
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1. Introduction

The processes of liquid jet instability and subsequent at-
omization predominates combustion efficiency in diesel en-
gines, gas turbines, and liquid rocket engines. A common
assumption in previous studies of instability of liquid jets is
a uniform velocity profile [1]. Based on their experimental
work, Reitz and Bracco [2] hypothesized that the rearrange-
ment of the velocity profile from parabolic to uniform upon
emergence of the jet from the nozzle is a possible catalyst of
instability. Leib and Goldstein [3] were the first to present a
theoretical analysis of the instability of an inviscid liquid jet
with a velocity profile that could be varied from parabolic to
uniform and concluded that the uniform profile is the most
unstable. Debler and Yu [4] followed with an experimental
study and a long-wave theory that agreed with the results
of Leib and Goldstein [3]. However, both Leib and Gold-
stein [3] and Debler and Yu [4] considered only the case of
a liquid jet injected into a vacuum. Furthermore, Leib and
Goldstein [3] focused their attention on Rayleigh breakup
regime characterized by a low Weber number and resultant
drop sizes that are comparable to the jet diameter. Debler
and Yu’s [4] asymptotic analysis did not lead to a dispersion
relation.

In the present work, we study the more practical problem
of the instability of a liquid jet of parabolic velocity profile
including the effect of a surrounding gaseous environment.
The range of parameters investigated corresponds to the at-
omization regime that is manifested when the product of
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the gas to liquid density ratio times Weber number is much
larger than one. The atomization breakup regime is of inter-
est to fuel injection applications because the drop sizes pro-
duced are much smaller than those associated with Rayleigh
regime. The influence of velocity profile relaxation on jet
intact length, which impacts the location of the resultant
fuel drops and hence combustion performance, is examined.
The analysis is confined to laminar flow since turbulent flow
profiles are not significantly different from uniform profiles
and thus are only slightly susceptible to profile relaxation
effects.

2. Analysis

Consider an inviscid liquid jet of radiusa that is is-
sued from a nozzle into an otherwise quiescent inviscid gas
medium. The viscosity of the liquid and gas are neglected
following Leib and Goldstein [3] and Debler and Yu [4] to
allow for deducing the effects of the velocity profile without
further complicating the analysis. The liquid jet is assumed
to have a dimensionless initial velocity profileW(r) in the
z direction. Thez-axis coincides with the centerline of the
undisturbed jet and ther axis is perpendicular to it. Assume
ui , wi are the dimensionless velocity components in ther,
z directions, respectively, resulting from a disturbance, and
pi is the dimensionless pressure due to the disturbance. The
velocities and pressure are made dimensionless by dividing
by the average velocity,Wav, while the pressure is divided
by ρ1W

2
av. Distances are made dimensionless by dividing

by the jet radius,a. The dimensionless equations of mass
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and momentum conservation that govern the incompressible
liquid and gas motions are linearized by neglecting all non-
linear terms in disturbance quantities, and may be written,
respectively, as

∂ui

∂r
+ ui

r
+ ∂wi

∂z
= 0, (1)

∂ui
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+ δi1W

∂ui
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= −ρ1
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whereδi1 is the Kronecker delta so thatδi1 = 1 or 0 depend-
ing on whetheri = 1 or i 6= 1, respectively andt is the time
which is made dimensionless by dividing bya/Wav. Elimi-
nating the pressure in Eqs. (2) and (3) by cross differentia-
tion and using the continuity Eq. (1) gives(
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The dimensionless disturbance stream function,ψi , is de-
fined by

ui = 1

r

∂ψi

∂z
, wi = −1

r

∂ψi

∂r
, (5)

which satisfies Eq. (1) identically.ψi is made dimensionless
by dividing by a2Wav. The normal mode representation of
the disturbance stream function may be expressed in the
form

ψi = Ψi(r)exp(ikz+ ωt), (6)

whereΨ i(r) is a function ofr only. k andω are made di-
mensionless by multiplying bya and a/Wav, respectively.
Substitution from Eqs. (5) and (6) into Eq. (4) yields

(ω + δi1ikW)

(
r

d2Ψi

dr2
− dΨi

dr
− rk2Ψi

)

−δi1ik

(
r

d2W

dr2
− dW

dr

)
Ψi = 0. (7)

Following Leib and Goldstein [3], the effects of velocity
profile relaxation are modeled via a family of dimensionless
velocity profiles of the form

W(r) = (1 − br2)

(1 − b/2)
, (8)

which is employed to produce progressively flatter profiles
as the parameterb goes from 1 (Hagen–Poiseuille profile) to
0 (uniform profile). Substitution of Eq. (8) into Eq. (7) gives

r
d2Ψi

dr2
− dΨi

dr
− rk2Ψi = 0. (9)

Note that the second bracketed term in Eq. (7) cancels out
for the liquid sincer d2W/dr2 = dW/dr =−2br/(1− b/2) and

for the gasδi1 = δ21 = 0. The general solutions of Eq. (9)
may be written in terms of Bessel functions as

Ψ1 = c1rI1(kr), Ψ2 = c2rK1(kr), (10)

since the velocity must be finite along the liquid jet axis
and the disturbances die out in the gas far away from the
liquid–gas interface. The linearized boundary conditions for
Eq. (9), are the kinematic condition that each fluid particle
on the surface remains there,

ui = ∂η

∂t
+ δi1W

∂η

∂z
at r ≈ 1 (11)

and the dynamic condition that the components of the normal
stress be continuous across the interface (for a derivation of
the surface tension term in Eq. (12) see, e.g., [5]),

p1 = p2 − 1

We

(
η + ∂2η

∂z2

)
at r ≈ 1. (12)

In accordance with the form of Eq. (6), the interface dis-
placement,η, may be expressed as

η = η0exp(ikz+ ωt). (13)

Substitution from Eqs. (5), (6) and (13) into Eq. (11) yields

ψi = − iη0

k
(ω + δi1ikc), (14)

where c= (1− b)/(1− b/2) =Wmax/Wav. Substituting from
Eq. (14) into Eq. (10) gives

c1 = − iη0

k I1(k)
(ω + ikc), c2 = − iη0ω

k K1(k)
. (15)

In accordance with Eqs. (6) and (13), the liquid and gas
pressures are sought in the form

pi = Pi(r)exp(ikz+ ωt), (16)

wherePi(r) is a function ofr only. The liquid pressure may
be obtained by substitutions from Eqs. (5), (6), (10), (15)
and (16) into Eq. (3):

p1 = − η0

kI1(k)

[
(ω + ikc)2I0(kr)

+ 2ibr

(1 − b/2)
(ω + ikc)I1(kr)

]
exp(ikz+ ωt). (17)

The gas pressure is obtained by applying Eqs. (5), (6),
(10), (15) and (16) in Eq. (3)

p2 = ρη0ω
2

kK1(k)
K0(kr)exp(ikz+ ωt). (18)

Substituting from Eqs. (13), (16)–(18) atr = 1 into the nor-
mal stress boundary condition (Eq. (12)) leads to the fol-
lowing dispersion relation:
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Fig. 1. Effect of the velocity parameterb on instability at We = 10 000
andρ = 0.01.
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The classical dispersion relation of Rayleigh [6] for the
instability of an inviscid liquid jet with uniform velocity pro-
file in a vacuum are recovered from Eq. (19) when bothb
andρ are zero. Leib and Goldstein’s [3] results are repro-
ducible whenρ = 0.

3. Results and discussion

A numerical solution of Eq. (19) is obtained using
Muller’s [7] method. The IMSLFORTRAN subroutine
ZANLY is used to yield values of the complex frequency
at any givenk, b, We, andρ. SubroutineZANLY is based
on Muller’s method with deflation which finds a real or
complex root of an arbitrary complex function given an
initial guess of the root. In providing the guessed root it is
helpful to realize thatωj ≈ −k in accordance with Gaster’s
[8] theorem.

Fig. 1 shows the variation of the growth rate with wave
number of disturbances at We = 10 000,ρ = 0.01, andb= 0.0,
0.2, 0.4, 0.5. The chosen Weber number and density ratio fall
within fuel injection applications. It is evident from Fig. 1
that a higher value of the parameterb hinders the instability.
Both the growth rate and cut-off wave number are reduced
when b is increased. The onset of instability occurs at a
larger wave number for velocity profiles of largerb. For the
range of parameters investigated, no instability was found
for b> 0.6. Therefore, it is concluded, based on the results
of Fig. 1, that the uniform profile is the most unstable. Leib
and Goldstein [3] came to a similar conclusion in their study
of the instability of a liquid jet in an evacuated region un-
der Rayleigh breakup conditions. This finding applies also
to the instability of a liquid sheet of parabolic velocity pro-
file as has been reported by Ibrahim [9]. It is envisaged that

the higher relative velocity at the liquid–gas interface asso-
ciated with flatter profiles (smallerb) is responsible for the
augmentation of aerodynamic instability. The higher the rel-
ative velocity across the interface, the larger the deforming
external pressure forces compared with the reforming cap-
illary forces.

The above results may be used to interpret the exper-
imental observations of the relatively stable intact length
that is formed upon liquid ejection from the nozzle up to
the inception of jet disintegration [10]. Since the velocity
profile of the liquid inside the nozzle is parabolic, then its
gradual relaxation from parabolic to uniform upon issuance
from the nozzle would require a finite length for instability
to set in. Increasing the jet velocity or employing a nozzle
of shorter length would produce a less developed velocity
profile (closer to uniform) at the nozzle exit leading to an
enhanced instability and a reduced intact length. This infer-
ence is in harmony with the experimental data for jet intact
length in the laminar flow regime [11,12].

Fig. 2 illustrates the effect of Weber number on the
growth of unstable disturbances atb= 0.2 andρ = 0.01 for
We = 10 000, 5000, 2500. It is clear from Fig. 2 that, in the
jet atomization regime, increasing Weber number enhances
instability. This is in contrast with the effect of Weber num-
ber on instability in Rayleigh breakup regime investigated
by Leib and Goldstein [3]. The reason for this contradiction
is that jet breakup is due to capillary pinching in Rayleigh
regime while surface tension opposes jet disintegration by
aerodynamic interaction in the atomization regime. Lin and
Ibrahim [13] demonstrated that the atomization regime may
be characterized byρWe� 1.

To provide further insight in to the range of parameters
and mechanisms of instability pertinent to Rayleigh and at-
omization regimes, the asymptotic solutions of the disper-
sion relation (Eq. (19)) in the limits of small and large
Weber number are perused. Fig. 3 depicts the variation of
the growth rate with the wave number atb= 0.2, ρ = 0.01
and We = 1, 10, 1000, 10 000. For We = 1, 10, the product
ρWe<1, capillary forces are dominant, and the instability

Fig. 2. Effect of Weber number on instability atρ = 0.01 andb= 0.2.
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Fig. 3. Behavior of instability for small and large Weber numbers at
ρ = 0.01 andb= 0.2.

Fig. 4. Variation of the critical velocity parameter,bcr, with Weber number
at ρ = 0.01.

is due to Rayleigh regime. Increasing Weber number from 1
to 10 causes the surface tension driven instability to dimin-
ish. On the other hand, when We = 1000, 10 000, the product
ρWe� 1 and the atomization regime sets in. Since in this
regime the aerodynamic forces are predominant, an increase
in Weber number from 1000 to 10 000 results in a more pro-
nounced instability. It is also interesting to note from Fig. 3
that the dominant wave number corresponding to the insta-
bility waves of maximum growth rate is much larger in the
atomization breakup regime compared to Rayleigh’s. Since
the size of the resultant drops is directly proportional to the
dominant wavelength, the drops produced in the atomization
regime are much smaller than those germane to Rayleigh
regime.

The critical value of the parameterb, bcr, at which insta-
bility is lost (i.e.�r = 0.0) is explored in Fig. 4 as a func-
tion of Weber number atρ = 0.01. It is observed thatbcr
initially decreases with Weber number up to We≈ 500 af-
ter which this trend is reversed. The behavior ofbcr may
be explained by the change in stability from Rayleigh to
atomization regime as We exceeds about 500 since at this
value of Weber number the conditionρWe� 1 is satis-

Fig. 5. Effect of density ratio on instability at We = 10 000 andb= 0.2.

fied. In the Rayleigh regime, the instability is more promi-
nent at a lower Weber number and hence a higherbcr is
achieved as the Weber number decreases. Contrarily, in the
atomization regime a larger Weber number promotes insta-
bility and a largerbcr is obtained as the Weber number is
increased.

The influence of gas to liquid density ratio on instability
is depicted in Fig. 5 atb= 0.2 and We = 10 000 forρ = 0.01,
0.005, 0.0025. It can be seen that increasing the density ra-
tio favors instability. This result is consistent with previous
work [13] where it is generally concluded that the higher
gas density promotes the destabilization of the jet by aero-
dynamic forces. A comparison of Figs. 2 and 5 reveals that
the onset of instability is dependent on the density ratio but
not Weber number.

Only temporal instability is considered because in the
atomization regime, Weber number is large and hence
both temporal and spatial instability yield approximately
the same results [14]. The disturbances are assumed to
be axisymmetric since we are concerned with the region
immediately downstream from the nozzle where the ve-
locity profile relaxation occurs [3,4]. Asymmetric (helical)
disturbances are only manifested several hundred nozzle
diameters downstream from the nozzle [15].

Nomenclature

a jet radius
b dimensionless velocity profile parameter
I1 modified Bessel function of the first kind of order one
K1 modified Bessel function of the second kind of order one
k dimensionless wave number
p dimensionless disturbance pressure
r dimensionless radial coordinate
t dimensionless time
u dimensionless radial component of velocity
w dimensionless axial component of velocity
W dimensionless basic axial velocity
We Weber number, We =ρ1W

2
ava/σ

z dimensionless axial coordinate
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Greek symbols
δi1 Kronecker delta
η dimensionless interface displacement

resulting from a disturbance
ρ gas to liquid density ratio
ρ1 liquid density
ρ2 gas density
σ surface tension
ω dimensionless complex frequency,ω =ωr + iωj
ωj 2p times the dimensionless disturbance

frequency
ωr dimensionless disturbance growth or decay

rate depending on whetherωr is positive or
negative, respectively

� dimensionless complex frequency,
�=ω(We)1/2 =ωr(We)1/2 + iωj (We)1/2

=�r + i�j
ψ dimensionless disturbance stream function

Subscripts
0 initial
av average
i i = 1 for liquid andi = 2 for gas
j imaginary
max maximum
r real
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